310 research outputs found

    Path Tracking by a Mobile Robot Equipped with Only a Downward Facing Camera

    Get PDF
    This paper presents a practical path-tracking method for a mobile robot with only a downward camera facing the passage plane. A unique algorithm for tracking and searching ground images with natural texture is used to localize the robot without a feature-point extraction scheme commonly used in other visual odometry methods. In our tracking algorithm, groups of reference pixels are used to detect the relative translation and rotation between frames. Furthermore, a reference pixel group of another shape is registered both to record a path and to correct errors accumulated during localization. All image processing and robot control operations are carried out with low memory consumption for image registration and fast calculation times for completing the searches on a laptop PC. We also describe experimental results in which a vehicle developed by the proposed method repeatedly performed precise path tracking under indoor and outdoor environments

    Backstepping Control for a Tandem Rotor UAV Robot with Two 2-DOF Tiltable Coaxial Rotors

    Get PDF
    The study of a fully actuated multi-rotor UAV robot is very important in the field of infrastructure inspection because it needs a dexterous motion, such as hovering in a special fixed attitude, etc. This paper presents a backstepping control method for a simplified fully actuated model of a tandem-rotor UAV robot with two 2-DOF tiltable coaxial rotors. A MIMO vectorial backstepping approach is adopted here because the input distribution matrix is a square and nonsingular matrix. The two-stage control method based on the Lyapunov second method is presented to stabilize the position and attitude of the whole system. The static control allocation problem is also solved by using a Moore-Penrose pseudo-inverse. Finally, two simulations are demonstrated to verify the performance of the proposed control method, where one is a stabilizing problem in which all the desired position and attitude are to be constant, whereas the other is a trajectory tracking problem in which the desired positions are time-varying while the desired attitudes are to be constant

    A Mobile Quad-Arm Robot ARMS: Wheel-Legged Tripedal Mobility and Quad-Arm Manipulation

    Full text link
    This letter proposes a mobile quad-arm robot: ARMS that unifies wheel-legged tripedal mobility, wheeled mobility, and quad-arm manipulation. The four arms have different mechanics and are designed to be general-purpose arms to enable the wheel-legged hybrid mobilities and manipulation. The three-degree-of-freedom (DOF) front arm has an active wheel, which is used for wheel-legged tripedal walking and wheel driving with passive wheels attached to the torso. The three-DOF rear arms are series elastic arms, which are used for wheel-legged tripedal walking, object grasping, and manipulation. The two-DOF upper arm is used for manipulation only; its position and orientation are determined by coordinating all arms. Each motor is controlled by an angle controller and trajectory modification with angle, angular velocity, angular acceleration, and torque constraints. ARMS was experimentally validated on the basis of the following four tasks: wheel-legged walking, wheel-driving, wheel-driving with grasping, and carrying a bag

    Positioning device for outdoor mobile robots using optical sensors and lasers

    Get PDF
    We propose a novel method for positioning a mobile robot in an outdoor environment using lasers and optical sensors. Position estimation via a noncontact optical method is useful because the information from the wheel odometer and the global positioning system in a mobile robot is unreliable in some situations. Contact optical sensors such as computer mouse are designed to be in contact with a surface and do not function well in strong ambient light conditions. To mitigate the challenges of an outdoor environment, we developed an optical device with a bandpass filter and a pipe to restrict solar light and to detect translation. The use of two devices enables sensing of the mobile robot’s position, including posture. Furthermore, employing a collimated laser beam allows measurements against a surface to be invariable with the distance to the surface. In this paper, we describe motion estimation, device configurations, and several tests for performance evaluation. We also present the experimental positioning results from a vehicle equipped with our optical device on an outdoor path. Finally, we discuss an improvement in postural accuracy by combining an optical device with precise gyroscopes
    • …
    corecore